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ABSTRACT

Microfabrics are discussed as features that minimise Helmholtz energy in a system undergoing defor-
mation and metamorphism. The energy minimisation process leads to inhomogeneous deformations and
hence the formation of microfabrics at a number of scales. This process together with the requirement for
compatibility both with the imposed deformation and local gradients in deformation means the micro-
fabric must refine on smaller and smaller scales in a self-similar manner leading to fractal geometries. Nine
independent levels of refinement are necessary to match the nine independent components of a general
imposed deformation gradient. The process of rotation recrystallisation is proposed as one example of self
similar refinement so that crystallographic preferred orientations (CPO) associated with rotation recrys-
tallisation are presented as fractals whose fractal dimensions reflect the conditions of deformation.
Compatibility also has implications for the formation of other microstructures such as non-rational
deformation lamellae. The evolution and orientations of microfabrics that minimise energy are related to
the history of the imposed deformation gradient (as was originally proposed by Sander) and not the strain
tensor as is commonly assumed. As examples, possible models for CPO development in deformed quartz
aggregates by rotation recrystallisation and the development of deformation lamellae in deformed quartz

grains are presented.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The hallmark of deformed metamorphic rocks is heterogeneity in
the distribution of deformation. At the electron microscope scale
this heterogeneity is expressed in the distribution of dislocations
(McLaren et al., 1970; White, 1973; Twiss, 1976) defining lamellar
structures and subgrain boundaries. At the grain scale one observes
deformation and B6hm lamellae that can correspond to rational or
non-rational crystallographic planes (Fairbairn, 1949; Twiss, 1974,
1976), and subgrain boundaries of various rational and non-
rational orientations (Trepied et al., 1980). At the optical microscope
scale, one sees domains of grains of like orientation (Sander, 1970;
Hobbs, 1966; Pauli et al., 1996; Heilbronner and Tullis, 2006;
although the orientations of grains within these domains can vary
considerably if the complete crystallography is established:
Halfpenny et al., 2006; Stipp and Kunze, 2008; Jiang et al., 2000;
Bestmann and Prior, 2003) and porphyroblasts, lineations and foli-
ations defined by variations in mineralogical composition and
micro-folds. At larger scales, chevron folds, rounded folds, mineral
lineations and so on are ubiquitous. Heterogeneity is developed at
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all scales and has been emphasised in a vast number of papers over
the past 100 years (for example, Sander, 1911, 1970; Turner and
Weiss, 1963; Hobbs, 1966; Oertel, 1983; Cobbold and Gapais, 1986;
Gapais and Cobbold, 1987; Pauli et al., 1996; Menegon et al., 2008;
Lloyd et al., 2010). The aim of this paper is to present a basis for
such heterogeneity based on the formation of domainal structures
as minimisers of Helmholtz energy. In addition there is a require-
ment that the heterogeneous deformation must be compatible from
one part of the aggregate to another and also with the imposed
deformation (as defined by the instantaneous deformation
gradient). We show that this means fractal geometries can develop.

The observation in deformed rocks of ubiquitous unstable
deformation modes as represented by inhomogeneous deforma-
tions contrasts with parallel developments in continuum mechanics
that concentrated on the stability of deformation and hence the
development of homogeneous deformations. This stability of defor-
mation arises from the Drucker postulate (Houlsby and Puzrin, 2006,
p. 31) that the Helmholtz energy of deformation is convex. We will
worry later on in this paper what this statement actually means. In
the early 1970’s and onwards (Ericksen, 1975) people who were
concerned with martensitic transformations realised that convexity
of the Helmholtz energy did not explain the heterogeneity of
deformation that they observed and they developed various
approaches to the subject based on non-convexity of the Helmholtz
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energy but within a framework of finite non-linear elasticity
(Ericksen, 1975; Ball and James, 1987; Truskinovsky and Zanzotto,
1996). The fact that this theoretical base was involved with elastic
deformations seemed to remove it from any application to plastic
deformations or to the development of fractures. This approach has
recently been extended to both the plastic deformation of materials
and fracture development with the realisation that heterogeneity of
deformation commonly observed in such materials can be
approached from the same point of view as was developed for finite
non-linear elasticity (for plastic deformation: Ortiz and Repetto,
1999; Carstensen et al., 2002; Miehe et al., 2004; for fracture:
Francfort and Marigo, 1998; Choksi et al., 1999; Del Piero and
Truskinovsky, 2001).The application of these concepts to the
formation of microfabrics in deformed rocks forms the subject of
this paper. The aim of this paper is to outline the general theory of
heterogeneous deformation based on the above principles and then
to present two possible examples namely deformation lamellae in
quartz and quartz CPO development by rotation recrystallisation.

The deformation and metamorphism of rocks involves the
development of fabrics at various scales. The term fabric is used in
the sense of Turner and Weiss (1963) to mean the internal ordering
of both geometrical and physical spatial data in a deformed rock; the
term microfabric refers to the micro-scale. Vernon (2004) divides the
term microfabric into microstructure comprising the spatial
arrangements and relationships of microfabric elements such as
grains, grain boundaries and foliation planes, and preferred orien-
tation referring to the spatial orientations of microfabric elements
including grains, domain boundaries and of crystallographic
features. This paper is involved only with fabrics developed at the
micro-scale and so involves length scales ranging from a few
microns up to about a metre. The principles discussed here are
applicable at all scales but it simplifies the discussion to concentrate
on the micro-scale where for geological strain-rates the deforma-
tion can be considered isothermal (Hobbs et al., 2010, Hobbs et al., in
press). As such the structures we are talking about are subgrain and
grain boundaries and their geometry, the distribution of various
mineral phases within the rock, the size distributions of grains and
subgrains and their shapes and crystallographic preferred orienta-
tions (CPO). The distribution of mineral phases involves a huge
range of microstructures including the geometries of schistosity,
gneissosity, mineral lineations, porphyroblasts and various forms of
metamorphic differentiation. Our concern in this paper is to develop
an integrated approach to microfabric development that
explains the various relations and geometries that we observe in
deformed metamorphic rocks and provides a framework for relating
such geometries to the conditions under which the microfabrics
formed.

In some instances, microstructures have been described as fractal.
Examples are sutured grain boundaries associated with recrystalli-
sation (Kruhl and Nega, 1996), subgrain size (Streitenberger et al.,
1995; Hahner et al,, 1998) and grain shape (Mamtani, 2010). The
fractal characteristics of these microstructures have been used to
indicate temperature and strain-rate (Kruhl and Nega, 1996;
Takahashi et al., 1998; Mamtani, 2010; Mamtani and Greiling,
2010). One question we seek to answer in this paper is: Why do
fractal geometries exist and what is the control on the fractal dimension
that is responsible for temperature and strain-rate dependence? The
answer lies in the development of microstructures as minimisers of
the Helmholtz energy of the system together with the necessity for
compatibility with the imposed and local deformation gradients in
order to minimise long range stresses. A second question is: Are there
other common microfabrics that have a fractal geometry and what is the
significance of this fractal geometry? One answer here concerns CPO
development, especially by rotation recrystallisation. We show that
such CPO patterns are fractal in nature and suggest that the fractal

dimension is a measure of a range of parameters including amount of
strain, temperature and strain-rate. In order to develop this approach
it turns out that the important feature controlling the development
at a particular instant of all of these microfabrics is the deformation,
as measured by the deformation gradient and not the strain as is the
current dominant paradigm. This means that there is a class of
structures in deformed rocks that, integrated over the deformation
history, is related to the kinematics of deformation rather than the
resultant strain.

The structure of the paper is as follows: In Section 2 we consider
the development of microfabrics as minimisers of Helmholtz
energy. Section 3 considers the conditions for a given microstruc-
ture to be compatible with the imposed deformation; this condi-
tion together with minimisation of Helmholtz energy leads to
fractal geometries. Section 4 discusses processes that lead to rota-
tion recrystallisation and the related grain microstructures and
fractal geometry. The discussion in Section 5 synthesises these
developments and emphasises the role of kinematics in controlling
the development and orientation of these structures rather than
the strain. Finally in Section 6 we offer some concluding statements
and point to future developments.

1.1. Notation

Symbols are defined in Table 1 and when introduced in the text.
Table 2 summarises the vector/tensor/dyad notation which follows
Rice (1971) and Asaro (1983). Bold faced symbols denote tensors,
vectors or dyads. The magnitude of a quantity A is written A.
Subscripts pertaining to crystal slip systems are written using Greek
letters. Thus m,, is a vector parallel to the normal to the slip plane, «,
and sg is a vector parallel to the slip direction, . Use is made of the
dyadic product in parts of this paper. The dyadic product of two
vectorsaand biswrittena ® b. For excellent discussions of the dyadic
product and its use in describing deformations see Nadai (1950) and
Bhattacharya (2003). The Einstein summation convention is used
throughout; for a discussion see Nye (1957) and Oertel (1996).

2. Microfabrics as minimisers of Helmholtz energy

Considerable progress has been made in the past 40 years in
understanding the development of microstructures in the theory of
finite deformation of non-linear elastic materials (Ericksen, 1975,
1998; Ball, 1977, 2004; Marsden and Hughes, 1983; Ball and James,
1987; Silhavy, 1997; Bhattacharya, 2003). As indicated in the Intro-
duction much of this material is now known to be applicable to
plastic (dissipative) deformations as well as to non-linear elastic
materials (Miehe et al., 2004). The basis for the mathematical theory
depends on the relationship between the stored elastic energy, ¥,
and the deformation gradient, F (Bhattacharya, 2003; relabelled the
position gradient by Means, 1983; see Zhang and Hynes, 1995),
defined by:

oy g
0X; X, 0X3
I 1aX, X, 0Xs

aX; X, 0X3

(1)

In (1), X1, X2, x3 are the Cartesian coordinates of a material point in
the current, deformed state and X3, X2, X3 are the coordinates of this
same point in some convenient reference state as shown in Fig. 1.
Notice that for a general deformation the deformation gradient is
not symmetric, so that (9x;/0X;) # (9x;/0X;)(i#j), and F has 9 inde-
pendent components instead of the six independent components
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Table 1 Table 2
List of symbols. Notation.

Symbol Definition Symbol Meaning Definition

a Crystallographic a-axis in quartz using indices

a Arbitrary vector A b Ajj, b; Second order tensor A, vector b

e Internal energy Ab Magnitudes of A and b

c Crystallographic c-axis in quartz Q=A-B Q = AB; Dot or scalar product of two

c A constant vector vectors A and B

d Independent degrees of freedom Q=AB Q = Aj;Bjj Dot or scalar product of the two

F F; Deformation gradient tensors A and B

F' F Deformation gradients on (+) and (—) Q=A-b Qi = Ajjb; The vector arising from the product
sides of a boundary of a second order tensor with a vector

F Mean imposed deformation gradient 1 T The identity matrix

f Fractal dimension A"! The inverse of the matrix A

g Critical resolved shear stress Q=mxs Q= &jmysk Cross or vector product of two

I Identity matrix &jjk is the Levi-Civita vectors m and s

] The determinant of F or permutation symbol

1 Aline Q=mo®s Q;=ms; Dyadic or tensor product of the two

Q Finite rotation matrix vectors m and s

m Vector normal to a slip plane AT Transpose of the matrix A

m* Vectors normal to a slip plane on the (+)
and (—) sides of a boundary

m, Vector normal to the slip plane «

m Effective normal to boundary between
domains in a sequential laminate

N Unit normal to an interface x=FX+c (2)

n Order of a tree

n, n; Number of leaves, number of internal nodes which says that each vector X in the undeformed state is distorted
of a tree ) ] ) ] and rotated by the deformation gradient F and translated via a rigid

R ::)at;f;: matrix associated with a deformation motion by the vector ¢ to become the vector x. Equation (2) is

R* Rotation matrices associated with deformation referred to as a deformation.

gradients in (+) and (—) domains
r Rank of a tree
S Specific entropy, | kg~!
s Vector parallel to a slip plane
s Vectors parallel to slip planes in (+) and (—)
domains
Sp Vector parallel to the slip direction
s Effective slip direction
T Absolute temperature, K
U Finite stretch tensor
u A parameter

X, X; Coordinates of a point in the undeformed state

X, X; Coordinates of a point in the deformed state

o Angle of rotation

ata” Relative volume proportions of laminates (+) and (—)

¥ Shear strain due to slip

vE Shear strains parallel to slip planes in (+) and (—)
domains

¥ Mean shear strain

A Stretch

0 An angle

¢ Length scale associated with a laminate of rank r

b)) A surface

0,0j Cauchy stress, Pa

oM Maxwell stress, Pa

¥ Stored elastic energy; Helmholtz energy, ] kg~

of the strain tensor. The volume change associated with the
deformation is measured by J, the value of the determinant of F; the
deformation defined by (1) is constant-volume for J = 1. The
significance of the deformation gradient is that it completely
defines the deformation, including the stretch and rotation, of all
line, surface and volume elements at each point within the body
that it applies to (Bhattacharya, 2003) whereas various measures of
the strain give a subset of this information; as shown in Fig. 1(b) one
cannot determine the deformation given only the strain. A general
deformation consists of a distortion, a rotation and a translation all
three of which can vary from one point to another in the deformed
body. The strain measures only the distortion. Specifically the
deformation at a point x in the deformed body is given by the
transformation,

The finite stretch tensor, U, and the finite rotation matrix, Q, are
given by Bhattacharya (2003):

U= VF'FandQ = FU™! (3)

where the superscripts ! stand for the transpose and the inverse
of the relevant matrix. U has the same eigenvectors as F' F but the
eigenvalues of U are the square roots of those of F' F. The defor-
mation and strain are purely geometrical concepts that relate the
reference state to the deformed state with no reference to the path
of material points during the deformation. If one integrates the
deformation over the path followed by material points to obtain the
deformation history then one is dealing with the kinematics.

Various forms of the relationship between the Helmholtz
energy and the deformation gradient are shown in Fig. 2. The
definition of the Helmholtz energy as

W= e—TS = W(F

i T, o) (4)

where e is the internal energy, T is the absolute temperature and S is
the entropy is well known for elastic materials (Nye, 1957) but it is
perhaps not so widely appreciated that (4) is just as applicable to
dissipative materials. In fact the first part of (4) written as
e = W + TS is simply an expression of the first law of thermody-
namics for a mechanical system stated as: a quantity called the
internal energy of a system exists and is made up of all the heat sources
in the system. In such a statement no distinction is drawn between
heat sources arising from stored elastic energy and heat sources
arising from dissipative deformations; both contribute to the
internal energy. Equation (4b) contains an additional parameter, «,
which is an internal variable that defines some parameter such as
damage accumulation or plastic strain. The complete description of
the evolution of the material involves the history of F, of T and of
o which commonly is also a function of Fand T. Hence the evolution
of W with continued deformation and/or changes in temperature,
depends on the history of a. Typical examples are the yielding of
plastic materials (Ortiz, 1999) and the accumulation of damage
(Lyakhovsky and Ben-Zion, 2008; Lyakhovsky et al., submitted for
publication) where the nature of the Helmoltz energy function
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a ., x.x b
3+
24+
Undeformed state
D (o ]
1 {
Deformed state
Xg, X4
= : : =
A 1 2 3 4

Fig. 1. The differences between a deformation and the corresponding strain. (a) The way in which the coordinates of a material point xy, X5, X3 in the deformed state are related to
the coordinates of this same point in some convenient reference state, X, X5, X3, defines the deformation gradient in Equation (1). The deformation, namely the complete
configuration of the deformed state, including the strains, rotations and translations at each point, is defined by the deformation gradient, F, as in Equation (2). The deformation for
this figure is: x; = 1.5X; + 0.5X, + 1.25, x, = X; + X3 + 1; the deformation is isochoric and consists of a rigid translation through a vector [1.25, 1], an anticlockwise rotation through
30.1° with principal stretches 2.065 and 0.482. (b) The strain corresponding to the deformation defined in (a). With no knowledge of the rigid rotation relative to the reference state
and the rotation involved in the deformation there is no information to define the deformed shape of an initial square in the reference state; it could be a rectangle or a paral-
lelogram. Thus the strain gives only a subset (namely the principal stretches and their orientations) of the information included in the deformation.

changes from convex to non-convex at a critical value of a. An
example of a transition of this type is shown in Fig. 2(g), (h).

One of the first uses of W for dissipative materials was by Biot
(1955, 1958), followed by more detailed developments by Rice
(1971, 1975). For a detailed discussion for both rate-dependent
and rate-independent dissipative materials see Houlsby and Puzrin
(1999, 2006) and for the use of the Helmholtz energy for dissipative
materials in the context of this paper see in particular Miehe et al.
(2002, 2004) and Hansen et al. (2010). Throughout this develop-
ment, from Biot onwards, it is proposed that the behaviour of any
dissipative system can be described using just two potentials, an
energy (which for mechanical systems is usually most conveniently
the Helmholtz energy) and the dissipation function which expresses
the rate of entropy production; the dissipation function for plastic
materials is the Legendre Transform of the yield surface (Houlsby
and Puzrin, 1999, 2006). This development is important since it
means that the stress, gj;, is related to the Helmholtz energy by g;; =
p(0W/0F;) where p is the density and the internal energy by
e = gjiF;j + TS (for a discussion, see the above papers especially Rice,
1975, and Houlsby and Puzrin, 2006). Thus W includes the energy
generated by both the elastic and dissipative deformations. It is
common in mechanics (Houlsby and Puzrin, 2006) to assume that ¥
is a convex function of the deformation gradient, F. The relationship
between W and the strain is discussed by Pipkin (1993) and F can
be replaced by some measure of the strain if this is convenient.
Pragmatically, it is normal to express W in terms of one of the
components of F as in Figs. 2 and 6, or as some convenient measure
of the strain. The mathematical treatment of this subject rapidly
becomes complicated and depends heavily upon the theory of
convex and non-convex functionals. We do not go down the route of
mathematical rigour; the interested reader is referred to the above
literature especially the papers by Ball (1977, 2004) and the book by
Silhavy (1997). W as a convex function of F is shown in Fig. 2(a). By
convex here we mean the type of relation illustrated in Fig. 2(a)
where the Helmholtz energy increases with some measure of the
deformation gradient so as always to be convex towards the
deformation gradient axis.

Since the Cauchy stress, oy, is related to the Helmholtz energy by
aij = p(0W/0F), the stress—strain curve can be obtained from the
W—F relation by differentiation. This means that a hardening
stress—strain curve implies a convex form for W whereas a soft-
ening stress—strain curve implies a non-convex form for W. Thus

the stress—strain curve corresponding to Fig. 2(a) is given in Fig. 2
(b). If for instance the W—F relation is a quadratic as it commonly is
in classical elasticity then the stress—strain curve is a straight line
(dotted in Fig. 2(b)). If the W—F relation is of higher order than
quadratic then the stress—strain curve shows increasing hardening
with strain (full curve in Fig. 2(b)). A convex form of the W—F
relation is favoured in classical continuum mechanics because it
guarantees stability of the deformation so that the deformation
always remains homogeneous. However we know that deforma-
tion in most materials is never stable and heterogeneities in the
deformation are ubiquitous. These heterogeneities are expressed as
subgrains defined by dislocation walls, deformation bands, shear
zones, folds and various forms of foliations and lineations. Thus,
“interesting” deformation behaviour does not arise from convex
W—F relations which lead to homogeneous deformations and the
emphasis switches to various non-convex W—F relations.

In order for unstable behaviour to develop, leading to micro-
structure formation, the W—F relation needs to be non-convex or
else some form of bifurcation occurs (Lyakhovsky et al., 1997). In
this paper we are concerned only with instabilities arising from
non-convex forms of W. The two important classes of non-
convexity are pseudo-convexity (Fig. 2(c)) and rank-1 convexity
(Fig. 2(e)). For rigorous definitions of these terms see Mangasarian
(1994) and Silhavy (1997). The stress—strain curves that result from
these two different W—F relations are shown in Fig. 2(d) and (f)
respectively. These figures mean that for instabilities and hence
microstructure to develop in deforming solids the response of the
material to deformation must be non-linear in the ways shown in
Fig. 2(d) and (f). Many experimentally deformed geological mate-
rials show stress—strain curves of this nature (for example,
Heilbronner and Tullis, 2006; Delle Piane et al., 2007, 2009). For
some materials, especially those that exhibit fracture, the W—F
relation is better represented by a diagram such as Fig. 2(g) with the
resultant stress—strain curve shown in Fig. 2(h) (Del Piero and
Truskinovsky, 2001). Lyakhovsky and Ben-Zion (2008) have
developed a thermodynamic based damage theory that leads to W
becoming non-convex after the accumulation of a critical level of
damage. This critical level of damage would correspond to point A
in Fig. 2(g).

In fluids and gases the convex relation shown in Fig. 2(a) has its
analogue in the plot of Gibbs energy against the specific volume for
a single phase and the stress—strain plot of Fig. 2(b) has its analogue
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Fig. 2. Various relations between the stored energy function, ¥, and the deformation gradient, F. Also shown are the stress—strain curves corresponding to each energy function. In
the diagrams in the left-hand column the measure of the deformation gradient is some convenient scalar such as Fy,. (a) Convex W—F relation. (b) Stress—strain curves corre-
sponding to (a). If the W—F relation in (a) is a quadratic then the stress—strain curve is linear as shown by the dotted line. If the W—F relation is of higher order than quadratic the
stress—strain curve shows increasing hardening with strain as shown by the full curve. (c) Pseudo-convex W—F relation. (d) Stress—strain curve resulting from the pseudo-convex
W—F relation in (c). (e) Rank-1 convex W—F relation. (f) Stress—strain curve resulting from the rank-1 convex W—F relation in (e). Corresponding points are marked. (g) Convex and
pseudo-convex W—F relations combined resulting in a discontinuity at A. (h) Stress—strain curve resulting from the W—F relation in (g). This resembles stress—strain curves that
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a Helmholtz Energy, ¥ b

P,—’
—
. A—

,_/

&

F-_|F F*
* A4 b
Q Deformation gradient

= |

Cc

Stress, ¢

Sm

Strain

Fig. 3. Minimisation of the Helmholtz energy by the development of two sets of shear bands. (a) The Helmholtz energy is rank-1 convex and an imposed deformation gradient is
represented by F. The energy can be minimised by dividing the deformation into two sets of shears with deformation gradients, F~ and F" corresponding to points where the
tangent line touches the stored energy function. (b) The resulting microstructure. The imposed homogeneous deformation, F, is represented by the dotted outline; the structures
that minimise the energy are F~ (grey) and F" (white). (c) The stress strain curve corresponding to the Helmholtz energy in (a). oy is the Maxwell stress and corresponds to that
stress where the areas between the stress strain curve and the horizontal line through ¢y above and below the stress strain curve are equal. € corresponds to the imposed strain and

¢*, ¢7, correspond to the strains in the two domains.

in the pressure-specific volume plot for a single phase (Kondepudi
and Prigogine, 1998, p. 190). These kinds of relationships have been
well known since the work of Gibbs (1906) and are the basis for
Equilibrium Chemical Thermodynamics where the minimum in the
Gibbs energy corresponds to the volume of the stable phase. The
non-convexity of Fig. 2(e) has a direct analogue in Equilibrium
Chemical Thermodynamics for two phase materials where the
Gibbs energy becomes non-convex (Kondepudi and Prigogine,
1998, p. 193) and a tangent construction (Cahn and Larche, 1984)
gives the specific volumes of the two stable coexisting phases and
the pressure-specific volume plot shows a region where the pres-
sure increases with the specific volume corresponding to a spinoi-
dal region. In such a plot the specific volumes of the two coexisting
stable phases are obtained from the Maxwell construction by
equating the chemical potentials of the two phases (Kondepudi and
Prigogine, 1998, p. 190).

In exactly the same way the Maxwell construction can be used for
deforming systems. The tangent construction shown in Fig. 3(a)
shows the way in which the Helmholtz energy of the system can be
minimised for an imposed deformation gradient F. Two stable
deformations F" and F~ exist and the system divides into domains
corresponding to these two deformation gradients which are defined

| l l

[} [¢] (4]

Fig. 4. Rotation of slip plane during deformation. (a) Initial geometry. m is the normal
to the slip plane and s is the slip vector. ¢ is the extensional stress. (b) After defor-
mation with the ends free to move. (c) After deformation with the ends constrained. m/
is the new orientation of the slip plane normal and s’ is the new orientation of the slip
vector. The slip plane rotates through the angle « towards the extension direction.

by the two points where the common tangent touches the W—F curve.
The resultant microstructure is shown in Fig. 3(b). The stress—strain
curve corresponding to Fig. 3(a) is shown in Fig. 3(c) and oy is the
Maxwell stress which represents the normal component of the
Eshelby energy-momentum tensor (Eshelby, 1975; Silhavy, 1997)
such that the area between the horizontal line through gy and the
stress—strain curve above is equal to the area between the line and
the curve below. The significance of gy is that it represents the stress
where the stored elastic energy is sufficient to supply the energy to
drive the formation of the microstructure. The stress oy plays the
same role as the chemical potential in chemical systems (Kondepudi
and Prigogine, 1998, p.190). Similar arguments have been followed by
Hunt and co-workers for the development of kink and chevron folds
(Hunt et al., 2001).

2.1. What causes the Helmholtz energy to be non-convex?

Two processes associated with crystal plasticity have been
identified as producing non-convex Helmholtz energy functions
(Ortiz and Repetto, 1999). These processes are geometrical softening
arising from single slip and latent hardening. In addition, in
deforming metamorphic rocks, softening arising from chemical

Fig. 5. Geometry of single slip deformation during extension. Vectors m and s are the
slip plane normal and slip direction in the undeformed (reference) state and these
become the vectors Rm and Rs in the deformed state through a rotation R.
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Fig. 6. Geometrical softening arising from single slip with the geometry shown in Figs.
4 and 5 with 6 =m/10. (a) Helmholtz energy plotted against the logarithm of the
stretch. (b) Plastic part of the stress—strain curve derived from (a).

reactions is likely to be important. We discuss each of these mech-
anisms in turn below.

2.1.1. Geometrical softening

When a single crystal is deformed in extension with a single slip
system operating, the slip plane tends to rotate, as shown in Fig. 4,
depending on the constraints on the crystal, so that ultimately the
slip plane and the slip direction align with the extension direction.
Similarly, in compression, a single slip system rotates so that the
normal to the slip plane tends to align with the compression axis.
As the slip system rotates in the imposed deformation, geometrical
softening results followed by geometrical hardening. In order to
demonstrate that part of the rotation leads to geometrical softening
and, more importantly, non-convex W—F relations, we begin with
a slip plane whose normal is m and slip direction s as shown in
Fig. 4(a). The discussion follows Ortiz and Repetto (1999). The initial
angle between the slip plane normal and the uniaxial extensional
stress, o, is 0 (see also Fig. 5). After deformation, if the ends are
constrained, the rotation of the slip plane is a. If R is the rotation
associated with the deformation then the vectors m and s become
Rm and Rs after the deformation where

cosae —sina 0 —sin(f + «)
R =|sina cose O|andRm = | cos(f +a) |,
0 0 1 0
cos(f + a)
Rs = | sin(f + «) (5)
0

The slip system is activated if the shear stress on the slip plane in
the direction of slip is

T = osin(d + a)cos(f + o) = g (6)

where g is the critical resolved shear stress for the slip system. The
deformation gradient for crystal plasticity involving one slip system
is (Rice, 1971; Asaro, 1983; Appendix B):

F = R[]I + ys@m] (7a)

sinae cosa O —sin(f + «)sinf  sin(f +a)cosl 0
0 0 1 0 0 1

(7b)

lcosa —sina O] {—cos(0+a)sin0 cos(f +a)cosf O
+7

We take F to be constrained such that there is a stretch of A and
a shear parallel to x, as shown in Fig. 5 and no shear parallel to x;.
This means that an initial unit vector parallel to x, with compo-
nents [0 1 0] is acted upon by F to become the vector [0 A 0]
according to

i

In (7a) I'is the identity matrix, y is the shear strain due to slip and ®
denotes the dyadic product between two vectors. Use of (7b) with
(6) and the relation (7c) gives

g sina

7= sin(0+a)cos(9+a); T= cos(0+a)cost9;

sinasin(f + «)

A = cosa + cos(@ + )

(8)
This enables us to plot the Helmholtz energy, ¥ = gv, against log A,
as shown in Fig. 6(a) for 6 = w/10. Also shown in Fig. 6(b) is the
resulting stress—strain curve.

The W—F relation is non-convex between log A = 0 and ca. 0.3
and gives rise to a softening and then a hardening ¢—F curve.
Although the departure from convexity is small it is sufficient to
represent a significant softening response in the stress—strain
curve. As such we expect geometrical softening to give rise to
microstructure in the form of alternating domains with different
deformation gradients. This type of behaviour has been reported in
metals (Dillamore et al., 1979; Asaro, 1983; Ortiz and Repetto, 1999).
Although we have discussed geometrical softening from the point
of view of crystal plasticity the same general principles hold for any
material that deforms by shearing parallel to a single plane. Hence
the deformation of thinly layered or foliated rocks may be expected
to develop geometrical softening if the deformation approximates
shearing parallel to these planes and micro-folds develop as
a response to minimising ¥ (Hunt et al., 2001).

2.1.2. Latent hardening

Latent hardening refers to the hardening of one slip system due
to interaction with dislocations from another slip system and is
well documented in metal plasticity (Asaro, 1983; Havner, 2005).
The process preferentially hardens that slip system relative to the
interacting system. Piercy et al. (1955) and Kocks (1960) pointed
out that such interactions inhibit the simultaneous operation of
more than one slip system throughout a grain so that although five
independent slip systems may perhaps operate within a grain, only
one operates at each place within a grain. The result is a domainal
structure within each grain where one slip system dominates
within each domain. Asaro (1983) refers to such microstructure as
“patchy slip”. Ortiz and Repetto (1999) proceed to show that the
operation of single slip within one part of a grain corresponds to
a Helmholtz energy minimum so that the process of latent hard-
ening leads to a spatial distribution of single slip that minimises the
Helmholtz energy of the system. This work has been extended by
Hansen et al. (2010). Although there is no experimental work on
silicates that demonstrates the existence of latent hardening, one
expects the process to dominate the crystal plasticity of silicates, at
least over some as yet undetermined temperature-strain-rate field,
as it does in metals so that domainal structures should be common,
as is observed (Pauli et al., 1996; Vernon, 2004, his fig. 5.17—5.28).

2.1.3. Chemical softening
There are relatively few experiments that demonstrate the
influence of mineral reactions on the mechanical properties of
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Fig. 7. Deformation in two adjacent domains. (a) Deformation on slip systems (s*, m*)
in two initially adjacent domains. (b) The same result as (a) can be obtained with slip
on (s*, m*) and rotations R*.

silicates (Brodie and Rutter, 1987; Stunitz and Tullis, 2001; de
Ronde et al.,, 2004). In general these studies show a weakening
effect arising from the chemical reactions and support a number of
other discussions on the influence of mineral reactions on
mechanical properties (Rubie, 1983; Wintsch, 1985). Such weak-
ening is consistent with a non-convex W—F relation as shown in
Figs. 2 and 3 and hence microstructures are expected to form in
order to minimise the Helmholtz energy. The situation is somewhat
complicated in the case of chemical softening because factors other
than a simple feedback between mineral reaction and deformation
come into play. These include in particular the influence of grain-
size reduction arising from the mineral reaction and the additional
complexity of strain-rate softening (Hobbs et al., 2010).

3. Compatibility with imposed deformation and fractal
microstructures

There are two aspects of deformation compatibility in an inho-
mogeneously deformed material. One is local compatibility between
deformations in adjacent domains and the other is global compati-
bility of the array of deformed domains with the imposed defor-
mation. In both instances we require the microstructure to develop
with no gaps or overlaps. This requirement also eliminates any local
stress concentrations and long range stresses.

The previous discussion has shown that for materials that are
characterised by a non-convex Helmholtz energy potential and
deformed by a deformation gradient, F, the Helmholtz energy is
minimised by dividing the body into two domains of differing
deformation gradients, F* and F-, but which add together,
according to their volume fractions, o™ and « ™, to produce the mean
imposed deformation gradient; the Helmholtz energy for such
materials is not minimised by a homogeneous deformation

(Bhattacharya, 2003). The mean imposed deformation gradient, F~,
is given by

F=aF +a'F;a +a" =1 (9)

This situation is illustrated in Fig. 3(b) where a* = a~. Compati-
bility of deformation across the interface between the two defor-
mations requires (see Appendix A) that

F"—F =a®N;N =1 (10)

N is the unit normal to the interface and a is an arbitrary vector. The
condition (10) is known as rank-1 compatibility since in order for
compatibility to be achieved (F" —F) must constitute a rank-1
matrix (see Appendix A; Silhavy, 1991, 1997; Bhattacharya, 2003).
One can show that the dyadic product of two vectors (in this case,
a and N) is always a rank-1 matrix. Equation (10) is a very powerful
relationship and enables one to check or prescribe the conditions
for compatibility across any boundary between two deformations
(Appendix A).

Moreover, if deformation within the two domains is by shear
parallel to planes whose normals are m* in directions s* as shown
in Fig. 7 then the deformation gradient in each domain consists of
rotations R* together with shears y*s* ® m* where y* are the
shear strains arising from slip within the two domains respectively.
These deformation gradients are expressed (Appendix B) by

F* = R*(I + y*s*om®) (11)

Equations (9), (10) and (11) mean that once m* and s* are
prescribed, the volume proportions of the two domains are fixed by
prescribing one of the «'s since a~ + o™ = 1 giving one degree of
freedom. In addition four possibilities exist for the domains
prescribed by choices of R* and y* resulting in four rank-1
constraints of the form (10). Thus for an array of laminates of the
form shown in Fig. 7 there is one degree of freedom (a* or o) and
four constraints.

However the development of these two deformation gradients
cannot fully match the imposed deformation and gaps always
remain as shown in Fig. 3(b) with the implication that long range
stresses remain so that the Helmholtz energy is not fully minimised.
One way of overcoming this situation is to produce the two defor-
mations on a finer scale as shown in Fig. 8. Gaps still remain and the
next stage in minimising the Helmholtz energy is to produce fine
scale structure within the gaps (Ball and James, 1987, their Fig. 6). An
example is shown in Fig. 9(c), (d) where self similar refinement of the
broad scale kinking comprised of simply F™and F~ is illustrated. This
refinement process is referred to as sequential lamination by various
authors including Kohn (1991) and Ortiz and Repetto (1999) and we
follow their approach below.
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Fig. 8. The square ABCD is deformed to become the rectangle A'B/C/D/. The deformation is approximated by alternating sheared zones with equal thicknesses but opposite senses of
shear. As the thickness of the sheared zones is decreased the inhomogeneous deformation field comes closer to approximating the imposed homogeneous deformation. The error in
matching (denoted by the grey areas) becomes smaller with the decrease in thickness and in this case is proportional to the thickness of the individual sheared zones.
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Fig. 9. Self-similar refinement of a microstructure to attempt to match an imposed deformation. (a) Coarse microstructure with gaps represented in three dimensions in (b). (c) Self
similar refinement of the microstructure to fit the imposed deformation. (d) Three dimensional arrangement of the self-similar microstructure. (Adapted from M. Ortiz, Presentation
at the International Congress of Theoretical and Applied Mechanics, Adelaide, Australia, 2008).

In order to describe this refinement process and to understand
how it leads to compatibility with the imposed deformation
gradient it is convenient to classify the various levels of refinement
according to their rank. The homogeneous imposed deformation
gradient is referred to as rank 0 and is represented by the deformed
rectangle AB/C'D/ in Fig. 8 or the deformed parallelogram repre-
senting F in Fig. 3(b). Laminates (or domains) of rank 1 are the next
level of refinement such as F" and F~ in these figures. A laminate of
rank r is a mixture of two rank (r-1) laminates. Kohn (1991) points
out that there is a length scale, {;, associated with each rank such
that ¢, > _;. Kohn also speculates on the development of
sequential refinement structures not comprised of laminar
regions (which we have called “laminates” here following Ortiz
and Repetto, 1999) but of other shapes. To date there is no
mathematical treatment of such possibilities. The stacking of
various domains to approximate an imposed deformation was
discussed and illustrated in an insightful manner by Turner and
Weiss (1963, pp. 366—382) and perhaps it is geologically more
relevant in some instances (especially recrystallisation micro-
structures) to think of the “laminates” in terms of these other
(more equant) microstructural arrangements. We return to this
possibility in Section 4.

a

Imposed homogeneous ——,
deformation gradient

LEVEL 0

LEVEL 1

LEVEL 3

It is convenient to think of the sequential refinement process in
terms of a binary tree structure as shown in Fig. 10(a). The tree is
composed of a number, n, of nodes arranged in levels. The number
of levels is the rank, r, of the tree. n is the order of the tree. Each
node is occupied by a deformation gradient F;, i = 1,....n. The
imposed homogeneous deformation is F; and corresponds to level
0. Each node has either two children or none. Nodes with a common
parent are called siblings and nodes with no children are called
leaves. Nodes that are not leaves are called internal nodes. The
deformation gradient associated with children of node i are deno-
ted as Fi. Each level, I, therefore contains at most 2! nodes. An
example is illustrated in Fig. 10 and represents a rank-3 laminate
with order 11. The leaves of the tree are nodes 6—11. Nodes 4 and 5
in level 2 correspond to deformation gradients F, = F, and
F} = Fs.The structure of the sequential laminate corresponding to
this tree is shown in Fig. 10(b).

We now consider what is required for a self-similar sequential
laminate to achieve compatibility with an imposed deformation
gradient. The assumption is that the deformation within each
laminate is achieved solely by isochoric shear parallel to a single
plane. Then the deformation gradient associated with aleafiis F; =
R;(I + v;s; ®m;) so that such a deformation introduces four degrees

o

Level 2

7 [

N

Level 3 >{<

Level 1

Fig. 10. The multi-level structure corresponding to the sequential refinement process that produces compatibility of the deformations within a sequential laminate system with an
imposed deformation. (a) The tree structure for a rank-3 laminate with order 11. (b) The corresponding microstructure. Adapted from Ortiz and Repetto (1999).
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of freedom (4)R; and (+)y;. We have seen above that an internal
node involves one independent degree of freedom and four
constraints. Thus the number of independent degrees of freedom, d,
for the system is

d = 4”1 — 31’11' (12)

where n; and n; are the numbers of leaves and internal nodes
respectively. In order to produce compatibility with the imposed
deformation gradient, nine independent degrees of freedom are
required so that d > 9. This cannot be achieved with a rank-1
laminate where n; = 2 and n; = 1 where d = 5. For the system shown
in Fig. 10, n; = 6 and n; = 5 so that d = 9. The required number of
degrees of freedom cannot be achieved with two complete levels so
that at a minimum, three levels are required to produce
compatibility.

The self-similar refinement shown in Fig. 9 is identical to the
self-similar refinement involved in producing many fractal struc-
tures such as Cantor dust, Koch curves and various fractal trees
(Mandelbrot, 1983). Thus the tree structure illustrated in Fig. 10(a)
is exactly that required for a dyadic Cantor dust fractal. Hence if one
intersected the microstructure with a line one would expect to
produce intersections with a fractal dimension identical to that of
a Cantor dust with a fractal dimension of approximately 0.6
(Mandelbrot, 1983, p. 77). Equally, if one were to trace the bound-
aries between different domains in Fig. 9(c) one produces a triadic
Koch curve and expects fractal dimensions somewhere in the range
1.1-1.5. Similarly if one could measure the fractal dimensions of
such refining microstructures in three dimensions one expects
fractal dimensions resembling those of Menger sponges with
fractal dimensions around 2.7. There are very few measurements of
the fractal dimensions of microstructures but those of Kruhl and
Nega (1996) obtain fractal dimensions between 1.017 and 1.289
for sutured grain boundaries in quartz and point out the resem-
blance to Koch curves. We return to this issue in Section 5. Exam-
ples of self-similar refining microstructures are shown by Vernon
(2004, his fig. 4.50 in a microcline perthite) and in a spectacular
manner by Hull (1999) for microfractures.

4. Examples: deformation lamellae and crystallographic
preferred orientations in quartz aggregates

Although crystallographic preferred orientations (CPO’s) of
quartz had been extensively studied since the pioneering work of
Sander (1911, 1930) it was not until the papers by Lister et al. (1978)
and Lister and Hobbs (1980) that a rigorous theoretical framework
for explaining the development of CPO’s and their relationship to
the kinematics of deformation was proposed. These papers also set
the scene for interpretation of quartz CPO’s in terms of amount of
strain, temperature and strain-rate. The theory rests on the work of
Taylor (1938) and Bishop and Hill (1951) and depends on the exis-
tence of five independent slip systems (Paterson, 1969) to produce
compatibility with the imposed boundary conditions of a homoge-
neous incremental strain at each instant during the deformation
history. It also assumes that the strain in each grain is homogeneous
and identical to the imposed strain and that the only mechanism of
deformation is crystal slip.

The Taylor-Bishop-Hill approach is amazingly successful and
comes very close to duplicating experimentally produced CPO’s in
metals (Bronkhorst et al., 1992; Miehe et al., 2002) for plane strain
and triaxial shortening and simple shearing deformation histories.
This is somewhat surprising because the deformation of individual
grains is rarely homogeneous and the strain from one grain to the
next is variable depending on the crystallographic orientation
relative to the imposed deformation. Moreover in some minerals it
is not clear that five independent slip systems are operative or even

available. In order to make up five independent slip systems in
quartz the (c + a) Burgers vectors are required along with (a) and
[c]. Although the (c + a) Burgers vectors have been identified using
the invisibility criterion with transmission electron diffraction (Ord
and Kirby, 1982; Trepied and Doukhan, 1982) its operation is much
more difficult than the operation of the (a) and [c] Burgers vectors
(Linker et al., 1984). Following the observations of Schmid and
Casey (1986) the tendency in the literature is to describe the
development of a particular CPO as the operation of just one slip
system such as “basal-(a)” or “prism-[c]”. In some minerals such as
olivine five independent slip systems do not exist and resort has
been made to self-consistent methods (Tome et al., 2002; Kocks
et al,, 1998; Wenk, 1999). Schmid and Casey (1986) point out that
the Taylor-Bishop-Hill approach fails to predict some types of
quartz fabrics. The situation is made even more interesting by the
observation that CPO’s associated with the rotation recrystallisa-
tion mechanism are not necessarily the same as those developed in
the un-recrystallised matrix (Stipp et al., 2002; Mancktelow, 2004;
Jetabek et al., 2007) although the orientations of such grains
suggest that crystal plasticity by slip is operative in the rotation
mechanism (Schmid and Casey, 1986; Heilbronner and Tullis,
2006). The questions that arise from this brief review are: What is
the process that makes it possible to produce CPO’s in quartz with the
operation of just one slip system and compatibility of deformation
throughout the aggregate? And is such a process related to rotation
recrystallisation? In what follows we first review the observations
on slip systems in quartz and then discuss these observations in the
light of energy minimisation concepts. This leads to a discussion of
rotation recrystallisation and the suggestion that quartz CPO’s can
be fractal.

4.1. Observed slip systems and slip features in quartz: deformation
lamellae

A large number of planar structures has been described from
naturally and experimentally deformed quartz based on optical and
transmission electron microscope (TEM) studies and on observations
of slip bands on the surfaces of single crystals whose surfaces were
polished before deformation (Christie et al., 1964; Baeta and Ashbee,
1968, 1969a,b; McLaren et al,, 1970; White, 1973; Ardell et al., 1974;
Twiss, 1974, 1976; Morrison-Smith et al., 1976; Linker et al., 1984).
Although such structures were first described by Sander (1930) and
many studies followed (Fairbairn, 1949, and references therein), the
group of papers mentioned above between 1964 and 1984 concen-
trated essentially on interpreting these structures in terms of the slip
systems operating in quartz. The outcome is that these planar features
are invariably expressed as some form of subgrain structure in TEM
studies and invariably have non-rational crystallographic orienta-
tions although in some instances the features may be close to rational
planes. Fairbairn (1949) in particular emphasises the non-rational
nature of deformation lamellae and presents data showing that the
angle between the c-axis and the pole to the lamella can vary between
0° and 80° with a concentration between about 7° and 35°. The slip
planes inferred from these studies are the basal plane (0001), the first
and second order prism planes {1010} and {1210}, and the positive
and negative rhombohedra {1011} and {0111}. The determination of
Burgers vectors is however much more problematic. It seems that
both a (2110) and ¢[0001] have been confirmed unambiguously
using the invisibility criterion in TEM (Baeta and Ashbee, 1968; Ardell
et al., 1974; Morrison-Smith et al., 1976). There are two TEM confir-
mations of a (¢ + a) Burgers vector (Ord and Kirby, 1982; Trepied and
Doukhan, 1982) although many workers have proposed (c+ a)as
a slip direction from surface slip band observations. The (c + a) slip
direction is necessary to achieve five independent slip systems in
quartz. Baeta and Ashbee (1969a) suggest that perhaps the (c + a)
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Table 3

Slip systems in a-quartz and direction cosines for slip plane normals and slip directions.

System m s Direction cosines of Direction cosines of
slip plane normal positive slip directions
Basal a 1(0001) +(a) (0001); [0, 0, 1] a;: [1,0,0]
ay: [-0.5, 0.866, 0]
as: [-0.5, —0.866, 0]
Prism a 1 {0110} +(a) m;(0110): [0, 1, 0] a;: [1,0,0]
m,(1010): [0.866, 0.5, 0] ay: [-0.5, 0.866, 0]
m3(1100): [0.866, —0.5. 0] as: [-0.5, —0.866, 0]
Prism ¢ 1{0110} +c m;(0110): [0, 1, 0] c:[0,0,1]
m,(1010): [0.866, 0.5, 0]
ms3(1100): [0.866, —0.5. 0]
Rhomb a 1{0111} +(a) r1(0111): [0, —0.7857, 0.6187] a;:[1,0,0]
r,(1011): [0.6803, 0.3934, 0.6187] ay: [-0.5, 0.866, 0]
r3(1101): [-0.6803, 0.3934, 0.6187] as: [-0.5, —0.866, 0]
Rhomb c+a 1{0111} +(c+a) r1(0111): [0, —0.7857, 0.6187] [c +a;]: [-0.6726, 0, 0.74]
+(c - a) r,(1011): [0.6803, 0.3934, 0.6187] [c — a1]: [0.6726, 0, 0.74]
r3(1101): [-0.6803, 0.3934, 0.6187] [c + az]: [-0.3363, 0.5826, 0.74]

[e — a,]: [0.3363, —0.5826, 0.74]
[c + a3]: [-0.3363, —0.5826, 0.74]
[c — as]: [0.3363, 0.5826, 0.74]

Burgers vector dissociates into (@) and [c] Burgers vectors but there is
no evidence of stacking faults in quartz to confirm this.

Despite all this work the situation remains confused with a lack
of consistent terminology (despite several efforts) and a bewil-
dering array of observations including rational and non-rational
lamellae structures and planar domains with and without lattice
rotations. There is the added point to be taken into consideration,
namely that many common quartz CPO’s can be satisfactorily
interpreted in terms of the operation of one Burgers vector ({(a) in
the case of Schmid and Casey, 1986). In the following we apply the
concepts developed by Ortiz and Repetto (1999) to try and bring
a systematic approach to the observations.

4.2. Domainal structure at the slip band scale

The discussion of geometrical softening and latent hardening
in Section 2 leads to the conclusion that the Helmholtz energy
function associated with these processes is non-convex. Geomet-
rical softening (and hardening) arises when one slip system
operates within a part of a grain; both geometrical softening and
latent hardening lead to “patchy slip” where again one slip system
operates in a part of a grain. Hence we are looking for situations
where single slip operates at least locally. Under such conditions
a homogeneous deformation does not minimise the energy and
the crystal can lower its Helmholtz energy by adopting some form
of microstructure. We explore the possibility that this micro-
structure consists of alternating regions or domains where one
slip system operates within each region but different slip systems
may operate from one domain to the next. As such the problem
reduces to the following: Given an imposed deformation gradient
and the array of slip systems known to operate in quartz, what kinds
of lamellar or domainal structures are geometrically possible? By
geometrically possible here we mean that the deformation is
compatible from one lamella or domain to another and no gaps or
overlaps develop.

This problem is one of compatibility. The deformation gradient
in each domain is given by FF=R*(I + y*s* ® m*) and compati-
bility across the interface between domains is guaranteed for
F*—F =a® N as discussed above and in Appendices A and B.
These equations enable one to calculate the complete array of
possible domainal structures that can form for an imposed defor-
mation gradient given the list of available slip systems. We leave

this accounting to a future paper and instead give an idea of what is
possible. One can distinguish two types of domains: Non-degen-
erate domains where different slip systems operate either side of
the boundary and degenerate domains where some aspect of the slip
system either side of the boundary (the slip direction or the slip
plane normal or both) is the same and has the same orientation
either side of the boundary.

We consider the slip systems for quartz summarised in Table 3.
Here only those slip systems associated with the basal plane (0001),
the first order prism planes {1010} and the negative rhombs
{0111} have been included. We adopt the convention that m, is
a unit vector parallel to the normal to the slip plane « in the positive
direction of the normal and sg, —sg are vectors parallel to the slip
direction B in the positive and negative directions respectively. The
coordinate conventions we adopt for a-quartz are shown in Fig. 11
and the terminology follows Linker et al. (1984, their fig. 1). With
these conventions the direction cosines of the various slip systems
can also be included in Table 3.

Ortiz and Repetto (1999) define two basic types of interface
between two deforming crystal plastic domains. In one type (called
non-degenerate interfaces) the deformation on at least one side of
the boundary requires rotation, R*, in order to maintain compati-
bility during the progressive deformation. The other type of

boundary (degenerate) requires no rotation to maintain
A
X;=¢C
3
X = my
-
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Fig.11. Coordinate convention used for a-quartz in this paper. The terminology follows
Linker et al. (1984, their fig. 1).
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compatibility. These second types of boundaries can be kink, sub-
grain or grain boundaries.

4.2.1. Non-degenerate interfaces are defined by the requirements

R's™ xR'm")-s™||(R"'st xRtm")-m~ | #0 (13a)
[( )sJ[( )-m]

[(s* X m*) -R*s*] [(s* X m*) -R*m*] #0 (13b)
Ortiz and Repetto (1999) show that at least in BCC metals the
interfaces for non-degenerate domains are always rational crys-
tallographic planes. If we look only at an infinitesimal deformation
and take R = R~ =I in both the conditions (13a) and (13b) one can
see that for all combinations of basal (a) slip (+) and prism (a) slip
(=), (s" x m™) is a vector parallel to [c] and hence (s* x m").s™ is
always zero. Similarly (s~ xm™) is parallel to (a) and hence
(s xm™)-m" is always zero. Thus all of these laminates are
degenerate. For basal (a) slip (+) combined with prism [c] slip (—),
(stxm™)-s™ is always non-negative but (stxm").m~ is always
zero. This is also true for (s”xm™)-m". Hence these slip system
laminates are non-degenerate. For (0111)[c +a;] slip in one
domain (+) and (1011)[c + as] slip in the other (—) and taking
R* =R =1, (s x m") is a non-rational vector, [-0.0694, —0.7115,
0.5286] and so (st x m™")-s~ is non-negative; so also are (s* x m™)-
m~, (s xm )-st and (s xm~)-m*. Hence these kinds of slip
system laminates are always non-degenerate.

The interfaces between degenerate domains can be subdivided
into three:

+

s =aq

/
(0001)

(0001)

4.2.2. Type 1 degenerate interfaces

Interfaces between coplanar slip systems with coincident
normals, m* =m~ , and different slip directions, s* #s~. The
interface in this case must be a rational crystallographic plane but
the gross slip direction is non-rational. Degenerate domains with
these characteristicshave R" =R =R N=m"'=m =m,s" = s,
and a =y'st —y~s~ where a is the vector in the compatibility
equation (10). The slip activities, y*, are not constrained by the
geometry alone. An example is an (0001) interface withs™ =[a;] and
s~ =[ay] as shown in Fig. 16(a). Rational basal deformation lamellae
presumably belong to this category. However effective (c + a) slip
could arise from a degenerate process also. The situation would
correspond to a common slip plane such as m;(0110) with slip
parallel to [+a1] in one domain and slip parallel to [+c] in the
adjacent domain. If the resolved shear stress on both slip directions
was similar then a package of laminations with a prism slip plane
and with apparent [c + a;1] slip would arise.

4.2.3. Type 2 degenerate interfaces

Interfaces between systems with coincident slip systems,
st =7, and different normals, m"* = m™. The interface in this case
which is parallel to s can be a non-rational plane crystallographi-
cally but the gross slip direction is rational and equal to s*. We
propose that this is the origin of many “irrational deformation
lamellae” observed in naturally and experimentally deformed
quartz although perhaps some arise as non-degenerate boundaries.
Non-rational “slip” features are also observed in metals arising from
such processes (Dmitrieva et al.,, 2009). An example is shown in
Fig. 12(b) where the slip system in one domain is basal [a;] and is
prism [a1] in the other. These kinds of domains are characterised by
R"=R =R st =s =s,a = |[ytm" —y m-||s, and

m* =1 (01 To)

Non-rational (0001)

Plane

Non-rational
plane

Fig. 12. Degenerate domain systems are slip packets with a common slip element in each domain. (a) Two parallel basal slip planes with different a-axes for slip. The boundary is
rational. (b) Two different prism slip planes with a common a-axis for slip. The boundary is non-rational. (c) Two parallel basal slip planes with an identical a-axis for slip but
different shears in each domain. The boundary is rational. (d) Basal slip in each domain and an identical a-axis for slip but different rotations either side of a non-rational boundary.

See text for discussion.
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Fig. 13. A model for rotation recrystallisation. Development of domainal structures in Domain A. Projections are upper hemisphere equal area projections following Linker et al.
(1984). (a) Initial orientation of lattice with basal slip parallel to (a;) oriented at 45° to the compression axis 6. The imposed slip deformation is sinistral with the slip direction
horizontal in the projection. (b) The imposed average deformation is represented by F and geometrical softening results in kinking to form the two domains A and B with
orientations of the c-axis, ca and cg respectively. The volume proportion of A domains is larger than that of B domains to approximately accommodate F. (c) The pole [c]5 places
[c + a;] close to the imposed slip direction and two rhomb planes close to the imposed slip plane. The resolved shear stress on these rhomb (c + a) systems is high; [c]a rotates to
[€]a1 (d) Domainal structure resulting from (c). The two domains A1 and A2 each have a different rhomb (c + a) slip system, as shown in (c), but can approximately accommodate
the deformation represented by the parallelogram A. The evolution of domain B is treated in Fig. 14. (e) In the next stage of refinement [c]a; places an a-axis close to the imposed slip
direction and high resolved shear stress on a prism (a) and two rhomb (a) systems; [c]a; is rotated to [c]as. For details of the relations of the A domains see Fig. 15. (f) Domainal
structure resulting from (e). The domains A1 and A2 in (d) are subdivided into domains with the different rhomb (a) systems shown in (e) operating. (g) In the next stage of
refinement [c]a3 is rotated to [c]as placing the c-axis approximately normal to the imposed slip direction in the slip plane. (h) The resulting domainal structure. Details are given in
Fig. 15. See text for discussion.
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Fig. 14. The development of domainal structures in Domain B. Domain B in Fig. 13 is first divided into domains B1 and B2 to approximate the deformation in domain B. (b) Further
refinement results in the microstructure shown. Details are given in Fig. 15. See text for discussion.

+mt — v-m—
N:M (14)
lytmt —y—m~||

where ||A|| stands for the norm of the vector A given by
I|A]| = ,/Z}L]A?. Thus the compatible interface between

a domain (+) with (0001)[a] slip system and another (—) with
(0110)[a4] slip has an orientation given by

Ni =0, Ny =y /\/vy? +v°, N3 = y"/\ /vy +v*  (15)

sothatify" =10y~ Nis the vector [0, 0.0995, 0.995] which means the
boundary is close to the basal plane (inclined at approximately 6°)
and is clearly non-rational; this boundary is similar in orientation to
the “sub-basal” lamellae described by McLaren et al. (1970). If we
change the slip activity to be y© = y~ then N is the vector [0, 1/v/2,
1/+/2]. Again the boundary is non-rational but corresponds approx-
imately to m(0122) and is similar in orientation to some of the planar

Cc Initial single grain

A baval (@) kinking

rhomb (a)

AT A8 A9 AI10 A11A12 A13 A14
rhomb (2} + prism (2

B3 B4 B5 B6
rhomb (a) + prism(a)

structures reported by Twiss (1976). The geometry of some common
degenerate subgrain boundaries of this type to be expected in quartz
is given in Table 4. This shows that boundaries involving these slip
systems will always be parallel to [a;] but will be non-rational. For
instance boundaries involving (0110)[a;] and (0111)[a;] slip are
approximately 5° off m;(0110) for v = 10y ) and approxi-

(0170) (0111
o T -+ _ — .
mately 25° off m;(0110) for Y(O]TO) =111y These kinds of

boundaries are expected to be common in quartz microfabrics
developed by rotation recrystallisation at high shear strains as dis-
cussed below.

4.2.4. Type 3 degenerate interfaces

Interfaces between domains with identical slip systems, s™ = s~
and m" = m~ but different shear strains in each domain, y* = y~.
Both the interface and the gross slip direction are rational. An
example where both the interface and the gross slip direction are
rational is shown in Fig. 12(c) where the slip system in both
domains is basal [a;]. If the domains are arranged as shown in

Fig. 15. A model for rotation recrystallisation. (a) Summary of domains developed in Domain A. (b) Summary of domains developed in Domain B. (c) The resultant tree structure. (d)

Skeleton of resulting CPO with A-domains labelled.
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Fig. 16. Fractal nature of CPO. (a) Fractal dimension for plot in (b). Lower hemisphere
equal area plot of 200 quartz c-axes. (c). “Unit cell” of circular counting array used to
count c-axes in the equal area projection and to determine fractal dimension of (b). (d)
Microstructure of sample showing area represented by (b). Data from Hobbs (1966).

Fig. 12(d) then a kink system is developed and the domain
boundary is non-rational. Again the slip system in both domains is
basal [a4].

4.3. Simple laminates

Simple lamination of any of the single slip domains above
enables a single crystal to achieve a larger range of deformation
gradients than is possible with single slip in a homogeneous
domain. For instance if m" =m™ and s™ = s, the interface must be
the rational crystallographic plane whose normal is m, but the
gross slip direction can be non-rational. Thus the mean shear, ¥, and
the effective slip vector, s, are given by:

atytst +aTyTs”
latytst +a-y=s||

¥ = Ha*y*s* +a’y’s’H and s =

(16)
4.3.1. The bulk deformation is given by
F = RI +7sem) (17)
Table 4
Some common degenerate subgrain boundaries for quartz.
Slip system in Slip system in N
(+) domain (—) domain
(0001)[a1] (0110)[ay] 0.7~ /VYH v VYT v
(0001)[ay] (0171)[ay] [0, 0.7857y~ M, (y"-0.6187y )M
M = /(r* — 1237477y~ +77)
(0170)[ay] (0111)[ay] [0, (y"+0.7857y™)/M, —0.6187y~ M

M = /(¥ + 157475y~ +77%)
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Clearly by varying the slip activities y* and their volume fractions
o any effective slip direction may be achieved.

4.3.2. Similarly, for laminates in which m™ = m™ and s* =s~, the
mean shear and the normal to the laminated system are

atytmt + o ym-
latytm* +a-y~m~||
(18)

The interface must be a non-rational crystallographic plane and the
slip direction is rational. By varying the slip activities, y*, and their
volume fractions any non-rational laminate could result. The bulk
deformation is given by

¥ = Ha*y*m* +a*y*m’H andm =

F = R(I + ys®Tm) (19)

4.4. A model for rotation recrystallisation

Rotation recrystallisation evidently does not involve the nucle-
ation of new grains that grow at the expense of stored or surface
energies but instead involves the progressive rotation of subgrains
with respect to the deformed initial grain so that large lattice rota-
tions can be achieved with no subgrain growth necessary. Of course
in many cases growth has occurred; we do not specifically consider
these growth effects here but discuss the implications of boundary
migration below and in Section 5.2. As far as we are aware the first
experimental demonstration of rotation recrystallisation was by
Hobbs (1968, pp. 386—391) who described the process as: “one in
which adjacent subgrains increase their relative orientations during
deformation until an array of highly misoriented grains is devel-
oped”. Relative rotations with respect to the deformed initial grain
of 90° were recorded although local misorientations are never larger
than ~20°. The aim of this discussion is to produce a mechanism
that accounts for such observations.

There seems to be no firmly established theory for the devel-
opment of rotation recrystallisation although the process appar-
ently involves crystal slip mechanisms because the resultant grains
commonly have a single slip system aligned with both the inferred
or observed shearing plane and shearing direction in a non-coaxial
deformation history (Bouchez, 1978; Bouchez et al., 1983; Schmid
and Casey, 1986; Dell’Angelo and Tullis, 1989; Schmid, 1994; Pauli
et al., 1996; Heilbronner and Tullis, 2006). The CPO that develops
at high strains by rotation recrystallisation is stronger and better
defined than the CPO in the un-recrystallised grains in the same
material (Heilbronner and Tullis, 2006). There are many papers that
shed light on how the process may work (Hobbs, 1968; White, 1973,
1977; Poirier and Nicolas, 1975; Guillope and Poirier, 1979; Schmid
et al., 1980; Tungatt and Humphreys, 1981; Garcia Celma, 1982; van
Daalen et al., 1999; Jiang et al., 2000; Bestmann and Prior, 2003;
Halfpenny et al., 2006; Stipp and Kunze, 2008).

We outline below the beginnings of a theory of rotation
recrystallisation in quartz based on the proposals and observations
made in the literature above and emphasise the proposal by Ortiz
and Repetto (1999) that the development of sequential laminates
is to be expected in systems undergoing single slip because such
a development minimises the Helmholtz energy in the system.
Such a proposal has been experimentally confirmed by Dmitrieva
et al. (2009) with the analysis of experimentally developed non-
rational lamellae in copper. In what follows we use the term
recrystallisation to mean solely rotation recrystallisation with no
grain-growth that is driven by Helmholtz energy or surface energy
effects. Grain (and subgrain) boundaries can migrate during the
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recrystallisation process described below but the reason is solely to
maintain compatibility of grain deformation with the imposed
deformation and with the deformation in adjacent domains.

We briefly summarise the proposals put forward by Ortiz and
Repetto (1999) and some subsequent work by Miehe et al. (2004)
before presenting a model for rotation recrystallisation. Firstly,
geometrical softening and latent hardening lead to non-convex
Helmholtz energy functions so that it is energetically favourable to
develop a domainal structure comprising regions of single slip rather
than deform homogeneously with several slip systems operating
simultaneously throughout. Secondly, in order to achieve compati-
bility with the imposed deformation gradient, nine (eight if the
deformation is prescribed as isochoric) independent deformations
must be present in order to match the nine components of the
imposed deformation gradient. One can see that these two proposi-
tions already have the potential to produce interesting microfabrics
because the development of at least eight domains each characterised
by single slip systems and each associated with its own lattice rota-
tion already has the hallmarks of rotation recrystallisation. Thirdly,
the domain boundaries are of two types labelled non-degenerate and
degenerate. With continued deformation, non-degenerate bound-
aries require rotation within the adjacent domains in order to
maintain compatibility across the boundary. Degenerate boundaries
require no rotation. Domain boundaries can be crystallographically
rational or non-rational; their geometry is not arbitrary but is clearly
defined by the deformation in adjacent domains. Fourthly, the model
proposes that strict compatibility with the imposed deformation
gradient in general requires a self similar refinement of the micro-
structure somewhere in the deformation geometry although this may
become unimportant at high strains (Miehe et al., 2004). Fifthly, by
varying the amount of slip activity in each domain and the volume
fractions of the domains, a wider range of deformations can be
matched than by single slip either side of the boundary. These prin-
ciples were developed by Ortiz and Repetto (1999) for deformation
histories where the microstructure is frozen early in the deformation
history and remains static throughout the history and were applied to
the development of subgrains by Ortiz et al. (2000). An advance was
made by Miehe et al. (2004) who extended the theory to include
progressive evolution of a two-dimensional bi-domainal micro-
structure. Further advances have been made by Hansen et al.
(2010). They show that as the deformation proceeds the volume
fraction of the two domains can change so that for some defor-
mation histories the geometry evolves so that only one domain
comprised of single slip survives and is capable of matching the
imposed deformation gradient. This means that the domain
boundaries migrate during the deformation history and the size
and shape of domains also evolves. The work by Miehe et al. (2004)
and Hansen et al. (2010) seems to represent the state of the art in
this area but further development is necessary to be able to
simulate the evolution of more complicated microfabrics. It is
important to stress that the size and shape of the subgrains evolves
with increasing deformation.

The literature reveals many direct correlations between the
above five propositions and observations made on quartz CPO
development. We take two examples, namely, Schmid and Casey
(1986) and Heilbronner and Tullis (2006). Schmid and Casey
(1986) emphasise that inhomogeneous deformation in which
domains of distinct crystallographic orientation develop is an
essential part of the CPO development process in naturally
deformed quartz rich rocks. They present compelling evidence
for single slip dominating in individual domains within the
microstructure. In particular slip parallel to (@) and the alignment
of one of the a-axes with a shearing direction is presented as
the dominant mechanism in CPO development. Recrystallisation
by a subgrain rotation mechanism is presented as a concurrent

contributing mechanism with crystal plastic mechanisms playing
a dominant role in controlling the orientation of the recrystallised
grains.

Heilbronner and Tullis (2006) determined the evolution of the
c-axis fabrics for a quartzite experimentally deformed in a plane
strain deformation history that was dominantly simple shearing
with minor shortening normal to the shearing plane. The obser-
vations supplement those of Schmid and Casey (1986). A distinct
domainal structure develops that has a length scale different from
the initial grain size. As the shear strain increases the individual
domains are dominated by single slip systems that can, on
average, accommodate the imposed incremental deformation.
Also with increasing shear strain there is a progression from
a situation where grains with basal (a) and rhomb (a) systems are
present to microfabrics dominated by rhomb (a) slip through to
microfabrics dominated by grains where prism (a) slip can ach-
ieve the imposed deformation but rhomb (a) slip is still present
(their Fig. 10). The patterns at high strains arise progressively by
the elimination of basal (a) domains so that there is a transition
sequence

basal(a) —basal(a) + rhomb(a) — rhomb(a) — prism(a)
+ rhomb(a)

The recrystallised grains show the strongest preferred orientations
whereas the “old grain” remnants show a related but weaker CPO
where the prism (a) orientations are not as well developed. The
percentage recrystallised and the rotation of the fabric skeleton
relative to the shearing direction increase with increasing shear
strain.

Below we present a model based on these observations that
proposes a domainal microstructure that is compatible with the
principles discussed by Ortiz and Repetto (1999). The basic premise
is that geometrical softening and/or latent hardening induce single
slip in parts of a grain so that inhomogeneous deformation results.
This represents a configuration that minimises the Helmholtz
energy of the system. The pattern of inhomogeneous deformation
is arranged so as to achieve compatibility with the imposed
deformation gradient. This is the inverse way of considering the
situation to Schmid (1994) who proposed that recrystallisation
weakens grain boundary constraints to allow grains to undergo
single slip. The Ortiz-Repetto model proposes that single slip is
preferred for energetic reasons and that rotation recrystallisation
enables compatibility with the imposed deformation to be ach-
ieved. Notice that both the approach used here and the Taylor-
Bishop-Hill approach appeal to energy extremum principles. The
Taylor formulation of the problem is: Given five independent slip
systems that operate simultaneously, what combination of shears on
these systems will minimise the work done assuming that the incre-
mental strain in every grain is the same as the imposed increment of
strain? The problem reformulated for rotation recrystallisation is:
Given an imposed deformation gradient, what spatial arrangements of
deformation gradients arising from single slip will guarantee defor-
mation compatibility between grains and sub-grains together with
compatibility with the imposed deformation and at the same time
minimise the Helmholtz energy of the system?

At the present time it is not possible to provide an answer to the
rotation recrystallisation question posed above in the sense that
a computer program could be executed to simulate both micro-
structural and CPO development although the papers by Miehe
et al. (2004) and Hansen et al. (2010) begin to explore such
models. This is because it is not possible at present to uniquely
predict the precise microstructure that will minimise the Helm-
holtz energy and the ways in which this microstructure will evolve
with time; the microstructures modelled in martensitic (Ball and
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James, 1987) and metal plasticity problems (Ortiz et al., 2000) do
not evolve during a simulation but are postulated by analogy with
observed microstructures. As indicated above, first steps in this
direction have been taken by Ortiz et al. (2000), Miehe et al. (2002)
and Hansen et al. (2010). However it is possible to work through
examples that illustrate the principles involved.

As one example we take a grain with an initial orientation
shown in Fig. 13(a) in a sinistral simple shearing deformation
history. The gross deformation is a bulk plane straining with the
bulk shear direction constantly oriented in time as shown in Fig. 13
(a). We choose this orientation as an example because this orien-
tation, and others nearby, requires the maximum number of
laminates or domains to form in order to reach a steady state
configuration that simultaneously accommodates the imposed
deformation and minimises the Helmholtz energy of the system.
Both [c] and [a1] are at 45° to ¢4 so that basal [a;] slip is favoured
(resolved shear stress, RSS = 0.5). Geometrical softening leads to
kinking in order to minimise the Helmholtz energy and produces
domains A and B as shown in Fig. 13(b). The volume fractions of A
and B domains are different in order to accommodate the average
imposed deformation, F. Domain A now has high resolved shear
stress on all rhomb (c+ a) systems (RSS = 0.45). In particular,
r,(1011) and r3(1101) have(c+ a) slip directions in the plane of
deformation (Fig. 13(c)) and between them can contribute to a non-
degenerate laminate with a gross slip direction almost parallel to
the bulk shear direction. In order to minimise energy we propose
that geometrical softening and/or latent hardening produces
a second domainal structure (A1 and A2) as shown in Fig. 13(d) in
which these two different rhomb (c =+ a) systems operate. Notice
that other closely oriented grains will have rhomb systems with
slightly different orientations so that between them they can
produce an average deformation that approximates the imposed
bulk deformation.

The development of A1 and A2 domains both associated with
slip on a positive or negative rhomb in a (c+ a) direction places
basal [a;] and rhomb [a;] systems into orientations with high
resolved shear stress and so that [a;] is approximately parallel to
the shearing direction (Fig. 13(e)). The resolved shear stress is
highest on the base (approximately 0.47) and marginally less on the
rhombs (of the order of 0.45) so that new laminate structures
(A3 + A4 and A5 + A6) can form employing these slip systems
individually (see Fig. 15). The decision on what actually happens is
governed by the critical resolved shear stress for these systems
which in turn is a function of the temperature and strain-rate. We
suppose that temperature conditions are such that only the rhombs
operate. The A3 + A4 and A5 + A6 domains have symmetrically
related slip systems (Figs. 13(f) and 15) so that laminates comprised
of both domains are capable of approximating the bulk shearing
deformation.

In all of the domains A3—A6 the resolved shear stress is now
high on both rhomb [a;] and prism [a;] systems (Fig. 13(g)) and
new laminates (A7—A14) form as shown in Fig. 13(h). Further slip
on the prism [a1] system does not alter the orientation of c, since ¢
is now the axis of rotation of the lattice, but operation of the rhomb
[a1] system progressively rotates [c] towards the normal to the bulk
slip direction in the plane of bulk shearing so that ultimately only
the prism [a;] system operates and all other laminates decrease in
volume. This represents a steady state orientation, at least for [c],
and the bulk imposed deformation can now be accommodated by
prism [a;] slip alone although some self similar refinement is
needed to be fully compatible with the imposed bulk deformation.
Such refinement may be expressed as a diffuseness in the CPO
rather than a change in subgrain size.

For the B domain shown in Fig. 13(b) the route to a steady state
orientation is somewhat shorter. This part of the grain is rapidly

placed in an orientation for rhomb [a;] slip by basal [a;] kinking, in
which only one kinked domain is capable of accommodating the
imposed deformation by basal (a) slip, and then follows the route
already outlined for part A of the grain. The sequence of laminate
development is shown in Fig. 14 and the final steady state prism
[a1] orientation together with rhomb [a;1] is developed.

The resulting units of the microstructure are shown in Fig. 15
(a) and (b). The tree structure which describes this domainal
structure is shown in Fig. 15(c) and as a whole consists of 12
leaves and 11 internal nodes. This means that the refining of the
microstructure results in 15 degrees of freedom which, for an
isochoric deformation gradient is more than the 8 degrees of
freedom necessary for gross compatibility. Grains of other initial
orientations require fewer levels of refinement and although the
number of degrees of freedom may exceed that necessary to
produce compatibility with the imposed deformation the number
that actually develop for a given initial orientation is that required
both to accommodate the imposed deformation and to reach
a steady state orientation. By definition, at steady state, no further
refinement by laminate development occurs and the Helmholtz
energy of the system has therefore reached a minimum. The
resulting CPO skeleton for the A domains is shown in Fig. 15(d).
This skeleton acts as an attractor for all initial orientations in the
system and represents all those crystallographic orientations that
together can accommodate the imposed deformation and mini-
mise the Helmholtz energy of the system. Notice that as one
moves down the tree the domains with prism (a) and rhomb
(a) slip dominate as is observed in the experiments of Heilbronner
and Tullis (2006). This progression down the tree corresponds to
the development of an asymmetrical girdle with a concentration
of c-axes normal to the bulk slip direction in the plane of shearing
through the sequence:

basal(a) — basal(a) + rhomb(a) — rhomb(a) — prism(a)
+ rhomb(a)

The boundaries of subgrains formed in this process are both
degenerate and non-degenerate. Those boundaries that are parallel
to a common slip direction are type 2 degenerate boundaries that
are non-rational and require no rotation to maintain deformation
compatibility across them. Their orientations are given by Equation
(18). Those boundaries that are oblique to both slip planes and slip
directions either side of the boundary are non-degenerate bound-
aries that require further rotation across them as deformation
proceeds in order to maintain deformation compatibility. Their
orientations can be calculated using Equation (11) along with the
rank-1 compatibility relation (10).

4.5. Fractal CPO’s

The development of sequential laminates involves a self similar
subdivision of the microstructure as shown by the tree structures in
Fig. 10(a) and 15(c). This produces a microstructure where broad
compatibility with the imposed deformation gradient can be ach-
ieved by single slip in each laminate. In addition, a self similar
refinement is required to fill in the gaps in this broad microstruc-
ture as shown in Fig. 9. This suggests that the microfabric may be
fractal and that this could be reflected in the CPO. The self similar
subdivisions and refinements reflected in the tree structures are
reminiscent of the formation of Cantor dust in one dimension, Koch
curves in two dimensions and a Sierpinski gasket in three dimen-
sions (Mandelbrot, 1983). The microfabric in two dimensions has
close affinities with the non-re-entrant dyadic Koch curve and so
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we expect a fractal dimension, f, such that 1 < f < 1.5. The plot in
Fig. 16(a) shows that for the CPO in Fig. 16(b) the fabric is indeed
fractal with a fractal dimension of 1.365. This calculation was per-
formed using arrays of overlapping circles (Fig. 16(c)) on the equal
area projection of c-axes where the total array of circles just
covered the projection and the number of circles occupied by at
least one c-axis pole was counted for a range of circle diameters.
Similar results were obtained with non-overlapping squares. There
clearly is a need to examine the process of calculating the fractal
dimension of CPO’s and perhaps it should be done on the sphere.
There is a wide seismological and astronomical literature on this
subject (Kagan, 2007; Murdzek, 2007; Koenig and Chainais, 2008).

5. Discussion
5.1. The development of fabric

In this paper we have explored the proposal made by Ortiz and
Repetto (1999) that the development of microstructure in plasti-
cally deforming materials is a response to minimise the Helmholtz
energy in the system and we have extended the concept to the
development of the complete microfabric. The Helmholtz energy is
envisaged as a non-convex function of the deformation gradient so
that a homogeneous deformation is not capable of minimising the
energy whereas an array of differently deformed domains does
minimise the energy. The concept in turn is based on a large volume
of work on non-linear elastic systems (Ball and James, 1987; Silhavy,
1997; Bhattacharya, 2003). The approach has also been applied
independently to the formation of kink and chevron folds (Hunt
et al,, 2001) and to the development of damage (Lyakhovsky and
Ben-Zion, 2008) and fracture (Del Piero and Truskinovsky, 2001).

The problem is essentially one of developing compatibility in
the deformation from one domain to another and such that the
average deformation of the complete array of domains is compat-
ible with the imposed deformation. Nine levels of refinement of the
microstructure are required to match the nine independent
components of the imposed deformation gradient matrix so that
some complexity in the spatial arrangement is an outcome of the
model. The refinement process comprises a self similar partitioning
of the average deformation. However any array of finite sized
domains can never match an imposed deformation so that a self
similar array of finer and finer domains develops in order to fill the
gaps. This ensures that any long range stresses are minimised.
These self similar refinement processes introduce a fractal char-
acter to the microstructure geometry. If the self-similar refinement
is also thought of as a scatter in the CPO then a fractal character is
expected of the CPO also.

Understanding the lower limit in size for these refinement
processes has been recognised as a problem for over 30 years
(Ericksen, 1975; Truskinovsky and Zanzotto, 1996; Bhattacharya,
2003). One way of arriving at a lower limit to the size of refine-
ment is to introduce the surface energy of the boundaries of
domains within the microstructure as an intrinsic part of the min-
imisation process (Bhattacharya, 2003). There is then a competition
between decreasing the Helmholtz energy by increasing the number
of domains and increasing the total energy of the system by
increasing the number of surfaces. The lower length scale for the
microstructure is then set when the increase in energy due to
introducing new surfaces matches the decrease in energy due to
formation of a new domain. It is clear that the magnitude of the
Burgers vector also sets a lower limit and it is interesting that Twiss
(1976) notes that domain boundaries may become fuzzy (the
“laminae” of Twiss) and this may mark an environment where the
dislocations have greater mobility and are not restricted to a single
slip plane. The present paper has concentrated on microfabrics

developed in deformed quartz aggregates but the arguments are
just as applicable to a range of other microfabrics.

In particular we have not explored the concept of minimising the
surface energy of microstructural boundaries in this paper but it is
clearly a fundamental issue in controlling the shapes and sizes of
microstructural elements. In particular the formation of foliations
and mineral lineations by metamorphic differentiation takes on
anew light. In particular the comprehensive work by Ortoleva (1989)
and co-workers Ortoleva et al. (1982) proposes that metamorphic
differentiation arises because of the non-linear interactions between
the kinetics of competing mineral reactions. His approach is similar
to other work in pattern formation arising from non-linear chemical
kinetics (Epstein and Pojman, 1998) which is commonly expressed as
some form of reaction-diffusion equation (Cross and Hohenberg,
1993). Ortoleva’s contribution has been to recognise (based on an
important paper by Ortoleva and Ross, 1974) that even the simplest of
mineral reactions can become unstable if the system is heteroge-
neous in the sense that reaction sites are not homogeneously
distributed but are controlled by the microstructure and/or localised
deformation sites. This heterogeneity would seem to be character-
istic of deforming metamorphic rocks.

The point that arises from this work is that the microstructural
surfaces that develop in such systems and that mark the bound-
aries between compositional phases are surfaces that minimise the
surface energy of the system (De Wit et al., 1997; Glimm and
Hentschel, 2008). They are in fact minimal surfaces or surfaces
that closely approach minimal surfaces in that they have zero
mean curvature (Hobbs and Ord, in press). Thus we envisage that
the development of microstructures such as foliations, cleavages,
schistosities and mineral lineations by metamorphic differentia-
tion processes is firstly a response to minimising the Helmholtz
energy in the system by partitioning the deformation into domains
and secondly an attempt to minimise the surface energy associated
with the boundaries of the fabric domains.

52. CPO’s

The main example we have explored in this paper is the devel-
opment of crystallographic preferred orientation in quartz aggre-
gates. The differences between the Taylor-Bishop-Hill approach and
others that have been proposed are essentially the postulated
mechanisms of ensuring or approximating compatibility with the
imposed deformation and between adjacent deformation domains.
The Taylor-Bishop-Hill approach ensures compatibility by insisting on
the simultaneous operation of five independent slip systems so that
any imposed deformation can be accommodated so long as the
deformation is identical in each grain; this means that the deforma-
tion is homogeneous. This means also that deformation compatibility
exists across grain boundaries of any orientation. In the model of
Jessell and Lister (1990), grains are selectively removed by grain-
boundary migration so that those that have experienced the
maximum work vanish from the CPO. Since the strict Taylor-Bishop-
Hill model lies in the background to this model, grain boundaries of
any orientation are admissible. The Taylor-Bishop-Hill model is not
physically realistic but the approach does explain many features of
observed CPO’s especially in metals when recrystallisation is absent
(Bronkhorst et al., 1992). The approach due to Etchecopar (1977) and
Etchecopar and Vasseur (1987) admits that incompatibilities will
exist but attempts to minimise the effect. Nevertheless, significant
gaps between grains and overlaps between grains remain in the
Etchecopar approach implying the existence of long range stresses
and discontinuities in the deformation. This approach also is not
realistic physically but comes remarkably close to simulating some
observed patterns of CPO. The self-consistent approach used by Wenk
(1999) relaxes the constraint of homogeneous deformation and hence
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allows deformation with fewer than five independent slip systems. In
such a model the grain boundaries need to obey the compatibility
condition (10). The approach proposed by Ortiz and Repetto (1999) is
perhaps the most realistic so far developed. It proposes that defor-
mation will be inhomogeneous in the sense that individual domains
characterised by single slip develop to minimise the energy of the
system. Deformation compatibility is enforced not only on average
with the imposed deformation but locally between domains as well.
The progressive refinement of microfabric together with the
requirement for compatibility of deformation in general demands
lattice rotations between differently deformed domains so that
rotation recrystallisation emerges from this scheme as a natural
consequence. We have presented a specific example of this process in
this paper with respect to the development of an asymmetric girdle in
a simple shearing deformation history. It is notable that the CPO can
be developed by rotation recrystallisation using the Ortiz and Repetto
approach without resort to five independent slip systems; slip
systems employing [c] as a slip vector are not necessary in the
example proposed.

A number of processes have been proposed for the development
of recrystallised grains of quartz (Stipp et al., 2010). One (christened
bulging recrystallisation; Drury et al., 1985; Hirth and Tullis, 1992;
Stipp and Kunze, 2008) is proposed to arise from rotation of sub-
grains accompanied by grain-boundary migration (Stipp et al.,
2010). A second (christened subgrain rotation recrystallisation;
Hobbs, 1968; White, 1973; Guillope and Poirier, 1979) is dominated
by subgrain rotation and a third (christened bulging recrystallisa-
tion; Hobbs, 1968; White, 1973; Guillope and Poirier, 1979) is
dominated by grain boundary migration but presumably relies on
subgrain rotation or some other mechanism (Halfpenny et al.,
2006) in order to form the initial region for growth. In addition
grain boundary sliding may be an important mechanism and
twinning may be important in some instances (Stipp and Kunze,
2008). Some authors have postulated rigid body rotation or some
form of granular flow that may or may not be accompanied by grain
boundary sliding (van Daalen et al., 1999; Jiang et al.,, 2000;
Bestmann and Prior, 2003; Halfpenny et al., 2006).

All of these mechanisms except those involving rigid body
rotation and granular flow seem to be special cases of the model
proposed here and we would interpret them as mechanisms to
achieve compatibility of deformation across the recrystallised
aggregate with progressive deformation of the aggregate. A model
for the subgrain rotation mechanism (sensu stricto) is specifically
addressed in this paper. However the model proposed here is to
a large extent “static” in that the subgrain structure is modelled at
successive instants during the deformation history. The develop-
ment and implementation of models that can address the history of
deformation and at the same time describe the sequential devel-
opment of the microfabric have been long in development and are
only just starting to appear (Miehe et al., 2002, 2004; Hansen et al.,
2010) but the sequential evolution of the microfabric (as one would
expect) involves changes in subgrain shapes and sizes and hence
the migration of subgrain boundaries. In particular Miehe et al.
(2004) show that although a diverse microstructure may form
early in the deformation history, rotation of the lattice can result in
a situation where compatibility of deformation with the imposed
deformation is achieved ultimately by a single grain orientation.
This means that grain boundary migration is a mechanism of both
increasing the grain size and in producing compatibility of defor-
mation. Similar results are presented by Hansen et al. (2010). This
process of elimination of incompatible grains by grain boundary
migration with the production ultimately of an array of grains
compatible with the imposed deformation may represent the
development of a stable, more or less homogeneous grain size even
though the CPO remains fractal.

Grain boundary sliding can be a special mechanism for
achieving compatibility of deformation across a grain or subgrain
boundary. The compatibility condition (10) is a statement that
discontinuities in the deformation between two subgrains are
allowed only in the direction normal to the subgrain boundary.
Discontinuities in the shear strain parallel to the boundary are
allowed but need to be accommodated on the scale of the subgrain
or smaller. Grain or subgrain boundary sliding is one way of
achieving this aspect of deformation compatibility at a fine scale
where the grain boundary becomes a shear zone. Thus boundary
sliding is one way of achieving part of deformation compatibility
across the boundary by subgrain refinement at a scale close to that
of the boundary itself.

As indicated earlier the Taylor-Bishop-Hill approach has been
remarkably successful in modelling the development of CPO’s
particularly in metals. Miehe et al. (2002) use the principle of min-
imising the Helmholtz energy to model CPO development in copper
with the strict requirement of homogeneous strain imposed by the
Taylor-Bishop-Hill approach relaxed to include periodic and stress
boundary conditions. They model plane, axisymmetric and simple
shearing deformation histories but with multiple slip allowed and
compare the results with the experimental results of Bronkhorst
et al. (1992). The results indicate that the strict Taylor-Bishop-Hill
approach reproduces the experimental results closely but the CPO is
much too sharp. The periodic and stress boundary conditions smear
out the CPO. This study suggests that the strict Taylor-Bishop-Hill
approach involving strict homogeneity in the imposed deformation
is an upper bound to the diffuseness in the resulting CPO. We do not
expect CPO’s predicted by this approach to be fractal. As the
boundary conditions are relaxed (as in the Miehe et al., 2002 study
or as in the self-consistent methods used by Wenk, 1999) the CPO
becomes more diffuse. In order to make fundamental changes to the
CPO predicted by the Taylor-Bishop-Hill approach a fundamentally
new deformation mechanism needs to be introduced and in this
paper this has been proposed as geometrical softening (hardening)
or perhaps latent hardening. This immediately enforces non-
convexity in the Helmholtz energy so that microstructures have to
develop in order to minimise the Helmholtz energy. The extra
requirement of compatibility both locally and globally results in
refinement of the microstructure which we interpret as rotation
recrystallisation. Grain and subgrain migration (changes in the sizes
and shapes of subgrains) are important ingredients of the evolution
of the microfabric and conceivably grain-boundary sliding is also.

Other mechanisms of deformation include dislocation climb.
Groves and Kelly (1969) show that this process can enable a general
deformation without five independent slip systems and is
responsible for a deformation gradient for climb of a set of identical
edge dislocations, '™, given by

Fclimb _ I+’)’dimb(s®$) (20)

where Y™ is the dilation introduced through downward exten-

sion of the extra half plane of a dislocation with s as a unit vector
parallel to the Burgers vector. This deformation by definition is not
isochoric but an isochoric deformation can be produced by two or
more different sets of dislocations undergoing simultaneous climb
or by a single set climbing with access to a grain boundary diffusion
flux. Thus the deformation gradient for combined slip and climb is

Ftotal _ Fclimeplastic (2] )

where PP'%1¢ js meant to be given by (11). This process simply
reduces the number of required slip systems to achieve a given
deformation and would be expected to smear out the result
of a strict Taylor-Bishop-Hill analysis. The orientation of grain
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boundaries for processes involving climb is not arbitrary and for
compatibility must obey (10) where F is now identified with F°™@.

Thus processes such as climb, grain-boundary migration and
some forms of grain-boundary sliding are expected to smear out
the CPO predicted by a strict Taylor-Bishop-Hill approach and all
lead to deformations where (10) needs to be obeyed for deforma-
tion compatibility.

The CPO development mechanism that derives from the work of
Ortiz and Repetto (1999) implies that the CPO itself may be a fractal
and we have shown one example of this (Fig. 16). The interesting
aspect to explore is whether the fractal dimension of CPO’s is useful
in defining the physical conditions of deformation. It is clear that
the degree of preferred orientation varies with amount of strain
(Heilbronner and Tullis, 2006) and that temperature also influences
the pattern of CPO (Law et al., 2004) in that the opening angle of
crossed girdle fabrics varies with temperature. It is not yet clear
that these differences in CPO are reflected in the fractal dimension
of the CPO but visual inspection of the patterns suggests this is so.
Clearly more work is needed. The argument we have presented
supposes that for the most part the critical resolved shear stresses
are the same on all activated slip systems. Changes in the relative
critical resolved shear stresses with temperature, strain-rate and
other parameters will govern the details of which domains develop
and their relative proportions so that different CPO’s will develop
and presumably different fractal dimensions. As with the Taylor-
Bishop-Hill approach, the Ortiz-Repetto approach prescribes that
the CPO development is controlled by the kinematics of the
deformation rather than by the strain that accumulates during the
deformation history. This is what Sander (1911) proposed.

6. Concluding statement

This paper proposes that the microfabrics observed in deformed
metamorphic rocks develop to minimise the total Helmholtz energy
of the reacting-deforming system. Microfabrics do not develop unless
the Helmholtz energy function is non-convex and such a form for the
Helmholtz energy function is suggested by any stress—strain curve
that shows softening. The development of microfabrics then follows
by exactly the same chemical thermodynamic arguments that pertain
to the development of two chemical phases in a two phase system
(the Maxwell construction, Kondepudi and Prigogine, 1998, p. 193)
and to the development of microstructures in finite non-linear elas-
ticity (Ball and James, 1987; Truskinovsky and Zanzotto, 1996). The
difference between this previous work and the present approach
derives from the paper by Ortiz and Repetto (1999) who pointed out
that the same principles can be applied to the development of
microstructures during the plastic deformation of metals. Two
additional aspects to microfabric development arise over and above
minimisation of the Helmholtz energy. One involves the self similar
refinement of a given coarse microstructure in order to achieve
compatibility with the imposed deformation gradient. This process
leads to fractal microstructures and, we propose, is the mechanism
involved in the development of rotation recrystallisation. The process
also implies that crystallographic preferred orientations should be
fractal and an example of this is presented. The total microfabric of
a deformed metamorphic rock is not to be viewed as a piecemeal
assemblage of individual grains and grain segregations that define
lineations and foliations unrelated to crystallographic preferred
orientations and subgrain microstructures, but as a coherent, inte-
grated structure that forms in order to minimise the Helmholtz
energy of the system. As such the formation of each aspect of the
microfabric is coupled to all other aspects. An important bi-product of
such an argument is that the microfabrics we see in deformed
metamorphic rocks form in response to the kinematics of

deformation and not the geometry of the deformation as represented
by the strain tensor as is a current dogma.

The present paper is an introduction to the interpretation of
microfabrics as minimisers of Helmholtz energy. It is hoped that this
work will stimulate detailed microstructural studies of rotation
recrystallisation in which precise measurements of subgrain/grain
boundary orientations together with precise measurements of the
total crystallographic orientations either side of the boundaries to test
whether the compatibility condition F* — F = a ® N is satisfied in
naturally and experimentally deformed minerals. Such measure-
ments need to be linked to the presumed kinematics of deformation
to ascertain if the microfabric is kinematically consistent or if modi-
fications to the model proposed here need to be developed. This
requires careful electron back-scattered diffraction (EBSD) work in
three dimensions and is the subject of a study about to begin.
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Appendix A. The deformation compatibility relation

We consider two domains labelled (+) and (—) in Fig. A1 sepa-
rated by a surface =. N is the unit normal to the surface at P and we
have selected coordinate systems x;, y; so that x and y, are parallel
to N and x4, y, are tangent to 3. Deformations defined byy = F'x + ¢
and y = F x + ¢ occur in the two domains where ¢ and d are
constant displacement vectors. We are interested in the conditions
under which the deformation y is continuous across = but the
deformation gradients are discontinuous.

For compatibility between two domains characterised by two
deformation gradients, F* and F-, an arbitrary tangent to the
boundary surface separating the two domains before deformation
must be equally distorted and rotated by both F* and F~ during the
deformation. This is a way of saying that the boundary surface must
be an invariant surface in both deformations. Hence, on the boundary

F'x+c=Fx+d
or,
(F+—F‘>x =d-c

For y to be continuous across the boundary d = ¢ and hence if l is
a line in the boundary

F'l = F1

which says that F™ deforms I in the same way that F~ does and
hence = is an invariant surface in the bulk deformation.

X2,¥2

Fig. Al. A surface = with local normal N between two defor-
mation gradients F* and F .
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If y is continuous across the boundary then the following rela-
tions hold.

(y1/0%1)" = (9y1/0x%1)” and (dy2/0x1)" = (dy2/0x1)”

There are no restrictions on (dy;/9x,)™ or (dy,/0x;)*. Hence
(F* — F) must be of the form

)13 3
where a = (3y1/0x2)" — (9y1/0%;)”  and B = (dy2/0x)" -

(0y2/0x3)". Thus (F" —F) is a rank-1 matrix and hence can be
expressed in the form

(F+ —F’) — a®b

where a and b are vectors. This follows since the dyadic product of
two vectors is always a rank-1 matrix. In particular since compat-
ibility is required across the plane whose normal is N we can write

(F*~F") = aoN

where a is an arbitrary vector. It follows that
F'I-F1 = (a®N)l = a(l-N) =0

since I is normal to N. Hence

F'l = FL

which means that both F" and F~ deform an arbitrary line I in
the boundary equally. Hence the compatibility condition is

F"—F =a®N

These same arguments apply in three dimensions. This relation
is known as the Hadamard jump condition in the literature; it
represents a discontinuity or jump in the deformation gradient but
ensures continuity of the deformation across the boundary.
Although resort to off axis Mohr circle constructions could be used
to arrive at these conditions in two dimensions there is apparently
no way of using such constructions for three dimensional
deformations.

As an example consider the following example. A grain is
divided into two domains A" and A~ by a boundary = with normal
N as shown in Fig. A2. Coordinate axes x; are chosen as shown.

a
A X, X;

Xg Xy

X2 N

A-I-

(o
C
v

Fig. A2. A surface = with normal N between two domains A™
and A™.
The deformation gradients in AT and A~ are given by

1 v O 1 -y O
F*{O 1 0] and F{O 1 0} so that Ff —F =

0 0 1 0 0 1
0 2y O 1 0
{O 0 O} = 27[0]@ 1| = 2ya®N where a is a vector
0 0 O 0 0

parallel to x1. F* — F~ is a rank-1 matrix and the grain undergoes
a simple shear through the combined deformation in A™ and A™.

Appendix B. The deformation arising from single slip

As a simple example of the deformation gradient that arises
from single slip we take the situation shown in Fig. B1(a) where s is

the vector [1 0] and m is the vector [0 1]. Then ys®m = {8 g}

1 v
01

X1 = X1+vX3 and x, = X3 so that the deformation is a simple shear

with a shear of y. Thus F'F = [ 1

and F =I1+vys®@m = { } The deformation is given by

Y

Y 1+7?
isochoric since the determinant of F'F equals 1. The eigenvalues of
F'Fare 1/2{(2 +¥?) = v+/4 + v2} and the rotation is anticlockwise
through an angle tan—1(y/2). Thus if y = 1 the principal stretches
are 1.618 and 0.618 and the rotation is 26.57°. The total deforma-
tion, F, is shown in Fig. A1(b) and comprises a plastic deformation,
U” with principal stretches given above and an anticlockwise
lattice rotation, R, through 26.57° such that F =RW’ which
corresponds to Equation (3b).

Fig. B1. Deformation resulting from single slip (a) Undeformed
state. (b) The deformed state with deformation gradient F

} and the deformation is

b

4
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represented by a plastic stretch U and a lattice rotation R".

In addition a general deformation may also involve an overall
rigid rotation R so that the complete general deformation gradient
that arises from single slip is F = R(I + ys®m).
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